124 research outputs found

    Finite Horizon Throughput Maximization for a Wirelessly Powered Device over a Time Varying Channel

    Get PDF
    In this work, we consider an energy harvesting device (EHD) served by an access point with a single antenna that is used for both wireless power transfer (WPT) and data transfer. The objective is to maximize the expected throughput of the EHD over a finite horizon when the channel state information is only available causally. The EHD is energized by WPT for a certain duration, which is subject to optimization, and then, EHD transmits its information bits to the AP until the end of the time horizon by employing optimal dynamic power allocation. The joint optimization problem is modeled as a dynamic programming problem. Based on the characteristic of the problem, we prove that a time dependent threshold type structure exists for the optimal WPT duration, and we obtain closed form solution to the dynamic power allocation in the uplink period.Comment: arXiv admin note: substantial text overlap with arXiv:1804.0183

    Energy efficient resource allocation for future wireless communication systemsy

    Get PDF
    Next generation of wireless communication systems envisions a massive number of connected battery powered wireless devices. Replacing the battery of such devices is expensive, costly, or infeasible. To this end, energy harvesting (EH) is a promising technique to prolong the lifetime of such devices. Because of randomness in amount and availability of the harvested energy, existing communication techniques require revisions to address the issues specific to EH systems. In this thesis, we aim at revisiting fundamental wireless communication problems and addressing the future perspective on service based applications with the specific characteristics of the EH in mind. In the first part of the thesis, we address three fundamental problems that exist in the wireless communication systems, namely; multiple access strategy, overcoming the wireless channel, and providing reliability. Since the wireless channel is a shared medium, concurrent transmissions of multiple devices cause interference which results in collision and eventual loss of the transmitted data. Multiple access protocols aim at providing a coordination mechanism between multiple transmissions so as to enable a collision free medium. We revisit the random access protocol for its distributed and low energy characteristics while incorporating the statistical correlation of the EH processes across two transmitters. We design a simple threshold based policy which only allows transmission if the battery state is above a certain threshold. By optimizing the threshold values, we show that by carefully addressing the correlation information, the randomness can be turned into an opportunity in some cases providing optimal coordination between transmitters without any collisions. Upon accessing the channel, a wireless transmitter is faced with a transmission medium that exhibits random and time varying properties. A transmitter can adapt its transmission strategy to the specific state of the channel for an efficient transmission of information. This requires a process known as channel sensing to acquire the channel state which is costly in terms of time and energy. The contribution of the channel sensing operation to the energy consumption in EH wireless transmitters is not negligible and requires proper optimization. We developed an intelligent channel sensing strategy for an EH transmitter communicating over a time-correlated wireless channel. Our results demonstrate that, despite the associated time and energy cost, sensing the channel intelligently to track the channel state improves the achievable long-term throughput significantly as compared to the performance of those protocols lacking this ability as well as the one that always senses the channel. Next, we study an EH receiver employing Hybrid Automatic Repeat reQuest (HARQ) to ensure reliable end-to-end communications. In inherently error-prone wireless communications systems, re-transmissions triggered by decoding errors have a major impact on the energy consumption of wireless devices. We take into account the energy consumption induced by HARQ to develop simple-toimplement optimal algorithms that minimizes the number of retransmissions required to successfully decode the packet. The large number of connected edge devices envisioned in future wireless technologies enable a wide range of resources with significant sensing capabilities. The ability to collect various data from the sensors has enabled many exciting smart applications. Providing data at a certain quality greatly improves the performance of many of such applications. However, providing high quality is demanding for energy limited sensors. Thus, in the second part of the thesis, we optimize the sensing resolution of an EH wireless sensor in order to efficiently utilize the harvested energy to maximize an application dependent utilit

    Optimal finite horizon sensing for wirelessly powered devices

    Get PDF
    We are witnessing a significant advancements in the sensor technologies which has enabled a broad spectrum of applications. Often, the resolution of the produced data by the sensors significantly affects the output quality of an application. We study a sensing resolution optimization problem for a wireless powered device (WPD) that is powered by wireless power transfer (WPT) from an access point (AP). We study a class of harvest-first-transmit-later type of WPT policy, where an access point (AP) first employs RF power to recharge the WPD in the down-link, and then, collects the data from the WPD in the up-link. The WPD optimizes the sensing resolution, WPT duration and dynamic power control in the up-link to maximize an application dependant utility at the AP. The utility of a transmitted packet is only achieved if the data is delivered successfully within a finite time. Thus, we first study a finite horizon throughput maximization problem by jointly optimizing the WPT duration and power control. We prove that the optimal WPT duration obeys a time-dependent threshold form depending on the energy state of the WPD. In the subsequent data transmission stage, the optimal transmit power allocations for the WPD is shown to posses a channel-dependent fractional structure. Then, we optimize the sensing resolution of the WPD by using a Bayesian inference based multi armed bandit problem with fast convergence property to strike a balance between the quality of the sensed data and the probability of successfully delivering it

    Finite horizon throughput maximization for a wirelessly powered device over a time varying channel

    Get PDF
    In this work, we consider an energy harvesting device (EHD) served by an access point with a single antenna that is used for both wireless power transfer (WPT) and data transfer. The objective is to maximize the expected throughput of the EHD over a finite horizon when the channel state information is only available causally. The EHD is energized by WPT for a certain duration, which is subject to optimization, and then, EHD transmits its information bits to the AP until the end of the time horizon by employing optimal dynamic power allocation. The joint optimization problem is modeled as a dynamic programming problem. Based on the characteristic of the problem, we prove that a time dependent threshold type structure exists for the optimal WPT duration, and we obtain closed form solution to the dynamic power allocation in the uplink period

    Optimal distributed scheduling algorithm for cooperative communication networks

    Get PDF
    There has been an enormous interest towards cooperative communication in recent years. Cooperative communication plays a signi cant role in providing a reliable communication in wireless networks. Cooperative communication helps overcome fading and attenuation in wireless networks. Its main purpose is to increase the communication rates across the network and to increase reliability of time-varying links. It is known that wireless communication from a source to a destination can bene t from the cooperation of nodes that overhear the transmission. In this thesis we consider problem of resource allocation in cooperative network consisting of Primary User (PU) and (N - 1) Secondary Users (SUs), operating in a shared wireless medium. In our network scenario, PU's dedicated channel su ers from fading. PU, in order to overcome fading and attenuation, grants access of its dedicated channel to other SUs conditioned on their cooperation. Whenever PU's dedicated channel is OFF, its packet can be relayed through SU's. Our ultimate goal is to design a distributed algorithm to achieve optimal throughput properties. Maximum Weight Scheduling can achieve throughput optimality by exploiting opportunistic gain in general network topology with fading channels. Despite the advantage of opportunistic scheduling, this mechanism requires that the existing central scheduler is aware of network conditions such as channel state and queue length information of users. We break this assumption by considering that only individual information is available at each user. We design a Carrier Sense Multiple Access (CSMA) based algorithm which only uses individual queue length information. We derive exact capacity region of the cooperative network for two user scenario thus establishing superiority of the cooperative network over non cooperative network. Then we prove throughput optimality of our proposed algorithm for two scenarios; rst being a cooperative network consisting of N users with only PU having fading channel and second a two user scenario where all existing links su er from fading

    Dynamic content updates in heterogeneous wireless networks

    Get PDF
    Content storage at the network edge is a promising solution to mitigate the excessive traffic load due to on-demand streaming applications as well as to reduce the streaming delay. To this end, cache-enabled cellular architectures can be utilized to increase the provided quality-of-service (QoS) and to reduce the network cost. However, there are certain issues to be considered in the design of the content storage strategy such that the contents should be refreshed in order to responds user`s expectations. Using a frequent cache refreshment strategy the ratio of satisfied users can be increased at an increasing network cost. In this paper, we introduce a cache refreshment strategy via leveraging learning techniques so that users' tolerance to the age of content is learned and the content is refreshed accordingly
    corecore